Zinc enhances the inhibitory effects of strychnine-sensitive glycine receptors in mouse hippocampal neurons.
نویسندگان
چکیده
Although extracellular Zn(2+) is an endogenous biphasic modulator of strychnine-sensitive glycine receptors (GlyRs), the physiological significance of this modulation remains poorly understood. Zn(2+) modulation of GlyR may be especially important in the hippocampus where presynaptic Zn(2+) is abundant. Using cultured embryonic mouse hippocampal neurons, we examined whether 1 microM Zn(2+), a potentiating concentration, enhances the inhibitory effects of GlyRs activated by sustained glycine applications. Sustained 20 microM glycine (EC(25)) applications alone did not decrease the number of action potentials evoked by depolarizing steps, but they did in 1 microM Zn(2+). At least part of this effect resulted from Zn(2+) enhancing the GlyR-induced decrease in input resistance. Sustained 20 microM glycine applications alone did not alter neuronal bursting, a form of hyperexcitability induced by omitting extracellular Mg(2+). However, sustained 20 microM glycine applications depressed neuronal bursting in 1 microM Zn(2+). Zn(2+) did not enhance the inhibitory effects of sustained 60 microM glycine (EC(70)) applications in these paradigms. These results suggest that tonic GlyR activation could decrease neuronal excitability. To test this possibility, we examined the effect of the GlyR antagonist strychnine and the Zn(2+) chelator tricine on action potential firing by CA1 pyramidal neurons in mouse hippocampal slices. Co-applying strychnine and tricine slightly but significantly increased the number of action potentials fired during a depolarizing current step and decreased the rheobase for action potential firing. Thus Zn(2+) may modulate neuronal excitability normally and in pathological conditions such as seizures by potentiating GlyRs tonically activated by low agonist concentrations.
منابع مشابه
Benzodiazepines Block 2-Containing Inhibitory Glycine Receptors in Embryonic Mouse Hippocampal Neurons
Thio, Liu Lin, Ananth Shanmugam, Keith Isenberg, and Kelvin Yamada. Benzodiazepines block 2-containing inhibitory glycine receptors in embryonic mouse hippocampal neurons. J Neurophysiol 90: 89–99, 2003. First published March 26, 2003; 10.1152/jn.00612.2002. Inhibitory glycine receptors (GlyRs) in the mammalian cortex probably contribute to brain development and to maintaining tonic inhibition....
متن کاملBenzodiazepines block alpha2-containing inhibitory glycine receptors in embryonic mouse hippocampal neurons.
Inhibitory glycine receptors (GlyRs) in the mammalian cortex probably contribute to brain development and to maintaining tonic inhibition. Given their presence throughout the cortex, their modulation likely has important physiological consequences. Although benzodiazepines potentiate gamma-aminobutyric acidA receptors (GABAARs), they may also modulate GlyRs because binding studies initially sug...
متن کاملGlycine potentiates strychnine-induced convulsions: role of NMDA receptors.
Strychnine poisoning leads to seizures that have traditionally been attributed to competitive antagonism of glycine receptors in the spinal cord. Although glycine is thought to act as an inhibitory neurotransmitter, a strychnine-insensitive glycine (Gly2) receptor has been recently described in cultured mouse neurons that is thought to be allosterically linked to the excitatory amino acid NMDA ...
متن کاملTonic zinc inhibits spontaneous firing in dorsal cochlear nucleus principal neurons by enhancing glycinergic neurotransmission.
In many synapses of the CNS, mobile zinc is packaged into glutamatergic vesicles and co-released with glutamate during neurotransmission. Following synaptic release, the mobilized zinc modulates ligand- and voltage-gated channels and receptors, functioning as an inhibitory neuromodulator. However, the origin and role of tonic, as opposed to phasically released, zinc are less well understood. We...
متن کاملStrychnine-sensitive glycine receptors depress hyperexcitability in rat dentate gyrus.
Previously we have shown that strychnine-sensitive glycine-gated chloride channels (GlyRs) are functionally expressed by CA1 pyramidal cells and GABAergic interneurons in mature rat hippocampal slices. We now report that glycine application to dentate granule cells and hilar interneurons recorded in acute slices from adolescent rats elicits a strychnine-sensitive current similar to glycine-medi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of neurophysiology
دوره 98 6 شماره
صفحات -
تاریخ انتشار 2007